
Sistemi Embedded e Real Time

Project Overview

4 novembre 2014
Università di Roma Tor Vergata

Contents

1 Introduction 1

2 Building a minimal Linux System 3

2.1 Prepare the sd card . 3

2.1.1 Create the Boot partition . 5

2.1.2 Create the Root partition . 6

2.1.3 Add Label to partitions . 7

2.2 Buildroot configuration . 7

2.2.1 Prepare the Root partition . 11

2.2.2 Prepare the Boot partition . 12

3 Linux Kernel and Xenomai patch 13

3.1 Xenomai overview . 13

3.1.1 The interrupt pipeline . 14

3.2 Download the cross compiler and Xenomai 15

3.3 The Linux Kernel . 15

3.3.1 Kernel compilation . 16

3.3.2 Optimization for Real Time systems 17

3.4 Compile Xenomai user space . 18

CONTENTS I

CONTENTS

4 Testing the system 19

4.1 Test 1: Latency benchmark tool . 20

4.2 Test 2: Interrupt response time . 22

4.2.1 GPIO Interfaces . 22

4.2.2 Interrupts . 23

4.2.3 The kernel module . 24

4.3 Test 3: Periodic signal . 28

4.3.1 RealTime Driver Model and Timer services 29

4.3.2 The kernel module . 31

4.3.3 Results and conclusions . 33

References 36

CONTENTS II

Chapter 1

Introduction

Real-time systems are computing systems that must react within precise time con-

straints to events in the environment. Embedded and Real Time Operative Systems

(RTOS) play a crucial role in our society since an increasing number of applications

rely in strict timing constraints. The main characteristic that distinguishes a real-time

task from other types of computation is time. The correctness of the system depends

not only on the logical result of the computation but also on the time at which the

results are produced. In a critical application, a result produced after the deadline

is considered to be a fatal fault, a late result produced by the job after the deadline

may have disastrous consequences.

Real-time tasks are usually distinguished in two classes, hard and soft. The difference

between them is based on the functional criticality of jobs and the usefulness of late

results

• A real-time task is said to be soft if meeting its deadline is desirable for perfor-

mance reasons, but missing its deadline does not cause serious damage to the

environment.

• A real-time task is said to be hard if missing its deadline may cause catastrophic

consequences on the environment under control.

1

Cap. 1 Introduction

In a non simulated environment, a real time application should be designed to

handle periodic, soft and hard tasks using different strategies. The operating sys-

tem should guarantee to respect the individual timing constraints of both the hard

real time and periodic task while minimizing the average response time of the soft

activities.

• In the first section we will describe the basic steps required for the implemen-

tation of an Embedded System, based on kernel 3.8.13, using the commercial

Raspberry Pi model B+ board. The development process will be handled by

Buildroot which simplifies and automates the process of building a complete and

bootable Linux environment for embedded systems.

• In order to pursue predictability, our work will be based on the dual kernel

approach using Xenomai which is a real-time subsystem that can be tightly

integrated with the Linux kernel. We will prepare, in the second section, the

linux tree in order to include the Xenomai support provided by the interrupt

pipeline.

• In the last section, we will measure latencies with a benchmark tool provided

with Xenomai test suite, create a module to handle interrupts on a GPIO port

and create a pwm signal with variable period.

All the above parts will be available online and updated constantly at http:

//www.userk.co.uk/tutorials

2

http://www.userk.co.uk/tutorials
http://www.userk.co.uk/tutorials

Chapter 2

Building a minimal Linux System

The widespread interest and enthusiasm generated by Linu’s successful use in a num-

ber of embedded applications has led to the creation of a several articles, tools, com-

panies, and documents all pertaining to embedded Linux. Usually building a minimal

distribution from scratch involves different steps starting from gathering sources, con-

figuration, compilation and finally installation. In this section we will prepare the

micro sd card and build the system using the well known Buildroot.

2.1 Prepare the sd card

In order to use our operative system we need to format a micro sd card and create

two partitions.

• The Boot Partition is a primary partition that contains all the files responsible

for booting the operative system (OS). The bootloader initiates the bootstrap

process by loading the OS into memory.

• The Root or System partition is a disk partition containing the operative system

folder mounted at the root directory in Linux called with the slash symbol /.

3

Cap. 2 Building a minimal Linux System §2.1 Prepare the sd card

Insert the SD in your card reader and run the fdisk command with root privileges

to identify the name of SD card, the device name is preceded by the /dev folder and

its name looks like “/dev/DeviceName”.

1 $ sudo fdisk -l

2

3 Disk /dev/sda: 500.1 GB, 500107862016 bytes <-- My Hard Disk

4 255 heads , 63 sectors/track , 60801 cylinders , total 976773168 sectors

5 Units = sectors of 1 * 512 = 512 bytes

6 Sector size (logical/physical): 512 bytes / 512 bytes

7 I/O size (minimum/optimal): 512 bytes / 512 bytes

8 Disk identifier: 0x00000000

9

10 Device Boot Start End Blocks Id System

11 /dev/sda1 1 976773167 488386583+ ee GPT

12

13 Disk /dev/sdb: 3941 MB , 3941597184 bytes <-- The Sd Card

14 53 heads , 21 sectors/track , 6916 cylinders , total 7698432 sectors

15 Units = sectors of 1 * 512 = 512 bytes

16 Sector size (logical/physical): 512 bytes / 512 bytes

17 I/O size (minimum/optimal): 512 bytes / 512 bytes

18 Disk identifier: 0x0002c262

19

20 Device Boot Start End Blocks Id System

21 /dev/sdb1 2048 7698431 3848192 b W95 FAT32

It’s worth noting that the hard disk appears in the first block and is denoted by sda.

Note that all future operations will affect the other device, sdb. As we can see from

the output, the sdb device has one partition in /dev/sdb1 formatted in FAT32. We

need to unmount the partition, delete it and prepare the memory card to host the

Operative System by creating the Boot and the Root partitions. We can create and

modify partitions on Sd card using the fdisk tool which is a command-line utility that

provides disk partitioning functions.

Let’s run the utility specifying the disk to work on.

1 $ sudo fdisk /dev/sdb

4

Cap. 2 Building a minimal Linux System §2.1 Prepare the sd card

Delete the partition

Delete the partition sdb1 pressing d. The partition 1 will be automatically selected.

1 Command (m for help): d

2 Partition number (1-4): 1

The p command will show an empty partition table. Or if your card contained

more than one partition, the command will show the others.

1 Command (m for help): p

2

3 Disk /dev/sdb: 7969 MB , 7969177600 bytes

4 246 heads , 62 sectors/track , 1020 cylinders , total 15564800 sectors

5 Units = sectors of 1 * 512 = 512 bytes

6 Sector size (logical/physical): 512 bytes / 512 bytes

7 I/O size (minimum/optimal): 512 bytes / 512 bytes

8 Disk identifier: 0x00007519

9

10 Device Boot Start End Blocks Id Syste

If you have another partition, delete it with the same command.

2.1.1 Create the Boot partition

Create a new primary partition using the n command and setting the partition type

as Primary (p). The utility will ask you the number of the partition you want to

modify, which is in our case the default value (1). Then you will be asked for the

sector, press Enter. Now you need to set the size, we will specify to write 10 MiB.

Press +10M.

1 Command (m for help): n

2 Partition type:

3 p primary (0 primary , 0 extended , 4 free)

4 e extended

5 Select (default p): p

6 Partition number (1-4, default 1): 1

7 First sector (2048 -7698431 , default 2048): [Enter]

8 Using default value 2048

9 Last sector , +sectors or +size{K,M,G} (2048 -7698431 , default 7698431): +10M

5

Cap. 2 Building a minimal Linux System §2.1 Prepare the sd card

Toggle Bootable flag and specify partition type

Specify the partition’s system id by pressing t, set the system type to FAT32 (c) and

toggle the bootable flag by pressing a.

1 Command (m for help): t

2 Selected partition 1

3 Hex code (type L to list codes): c

4 Changed system type of partition 1 to e (W95 FAT32 (LBA))

5

6 Command (m for help): a <-- Toggles the bootable flag

7 Partition number (1-4): 1

2.1.2 Create the Root partition

Create a second primary partition for the file system with the entire remaining space

as dimension.

1 Command (m for help): n

2 Partition type:

3 p primary (1 primary , 0 extended , 3 free)

4 e extended

5 Select (default p): p

6 Partition number (1-4, default 2): 2

7 First sector (264192 -7698431 , default 264192): [Enter]

8 Using default value 264192

9 Last sector , +sectors or +size{K,M,G} (264192 -7698431 , default 7698431):[Enter]

10 Using default value 7698431

Display the partition table with command p and check if you have a 10MiB partition,

formatted in Fat32 with the bootable flag and another one primary.

1 Command (m for help): p

2

3 Disk /dev/sdb: 7969 MB , 7969177600 bytes

4 246 heads , 62 sectors/track , 1020 cylinders , total 15564800 sectors

5 Units = sectors of 1 * 512 = 512 bytes

6 Sector size (logical/physical): 512 bytes / 512 bytes

7 I/O size (minimum/optimal): 512 bytes / 512 bytes

8 Disk identifier: 0x00007519

6

Cap. 2 Building a minimal Linux System §2.2 Buildroot configuration

9

10 Device Boot Start End Blocks Id System

11 /dev/sdb1 * 2048 22527 10240 c W95 FAT32 (LBA)

12 /dev/sdb2 22528 15564799 7771136 83 Linux

Write the table to disk and exit by pressing w. If you get the above warning, umount

the device from nautilus or with the following command and try again.

1 $ sudo umount /dev/sdb1 /dev/sdb2

2 $ sudo fdisk /dev/sdb

3 Command (m for help): w

4 The partition table has been altered!

5

6 Calling ioctl() to re -read partition table.

7 Syncing disks.

8 userk@dopamine:¬$

2.1.3 Add Label to partitions

The last step is to associate the names Boot and Root to respectively /dev/sb1 and

/dev/sdb2.

1 userk@dopamine:¬$ sudo /sbin/mkfs.vfat -n Boot /dev/sdb1

2 userk@dopamine:¬$ sudo /sbin/mkfs.ext4 -L Root /dev/sdb2

Remove and insert the Sd card and check if nautilus sees the partitions. In the next

subsection we will set up the Cross-Compiler and build the minimal linux distribution.

2.2 Buildroot configuration

Buildroot simplifies the process of building a complete Linux system for an embedded

system, using cross-compilation. It is able to generate a cross-compilation toolchain,

a root filesystem, a Linux kernel image and a bootloader for the target, the Raspberry

Pi.

We will first create our workspace for the project, in the home folder, then down-

7

Cap. 2 Building a minimal Linux System §2.2 Buildroot configuration

load the latest version of Buildroot from the official website and untar the compressed

file.

1 ¬$ cd && mkdir RaspberryPi && cd RaspberryPi

2 ¬/RaspberryPi$ wget http :// buildroot.uclibc.org/downloads/buildroot -2014.11. tar.bz2

3 ¬/RaspberryPi$ tar xjf buildroot -2014.11. tar.bz2 && cd buildroot -2014.11

4 ¬/RaspberryPi/buildroot -2014.11$

Once downloaded we can configure the tool and compile it.

Buildroot has a graphical configuration tool. Please note that there is no need to run

the command as root to configure and use Buildroot. Since the Buildroot team has

prepared a configuration file for the Raspberry Pi, we will use it as a starting point.

Please check the steps written in “buildroot-2014.11/board/raspberrypi/readme.txt”.

1 ¬/RaspberryPi/buildroot -2014.11$ sudo make ARCH=arm help | grep raspberrypi

2 raspberrypi_defconfig - Build for raspberrypi

3 ¬/RaspberryPi/buildroot -2014.11$ sudo make raspberrypi_defconfig

4 [...]

5 #

6 # configuration written to .config

7 #

The next step is to run the configuration assistant.

8

Cap. 2 Building a minimal Linux System §2.2 Buildroot configuration

Figure 2.1: The configuration assistant

1 ¬/RaspberryPi/buildroot -2014.11$ sudo make menuconfig

We need to modify a few fields in this configuration tool. Starting from the header

files we wish to use in order to patch the kernel with the Adeos and Xenomai patch

and few utilities. The main settings are reported below.

• Build Options

– Host dir: /usr/local/cross-rpi/

• Toolchain

– Toolchain type: Buildroot toolchain

9

Cap. 2 Building a minimal Linux System §2.2 Buildroot configuration

– Kernel Headers: (Manually specified Linux version) (3.8.13) linux version

– Custom kernel headers series (3.8.x)

• System Configuration

– (x3n0B0mb) System hostname

– (Welcome to x3n0B0mb) System banner

– Root password: pitos

• Kernel

– Kernel version: (Custom Git repository) (git://github.com/raspberrypi/linux.git)

URL of custom repository

– (d996a1b) Custom repository version

– Kernel configuration (Using a defconfig) (bcmrpi quick) Defconfig name

– Kernel binary format: zImage

• Target Packages

– (y) Show packages that are also provided by busybox

– Debugging, profiling and benchmark

– Development tools

– Hardware handling

– Interpreter languages and scripting: python3

– Miscellaneous: mcrypt

– Package managers: opkg

10

Cap. 2 Building a minimal Linux System §2.2 Buildroot configuration

– Networking applications

– Real-Time

– Shell and utilities

– Text editors and viewers

The compilation requires an internet connection to download different packages

specified in the configuration step. The make command will generally perform the

following actions:

• download source files (as required);

• configure, build and install the cross-compilation toolchain, or simply import an

external toolchain;

• configure, build and install selected target packages;

• build a kernel image, if selected;

• build a bootloader image, if selected;

• create a root filesystem in selected formats.

2.2.1 Prepare the Root partition

Extract the filesystem image just created in the Root partition located at /me-

dia/$USER/Root

1 ¬/RaspberryPi/buildroot -2014.11$ ls output/images/

2 rootfs.ext2 rootfs.ext4 rootfs.tar

3 ¬/RaspberryPi/buildroot -2014.11$ cd /media/$USER/Root/ && ls

4 lost+found

5 /media/userk/Root$ sudo tar -xvf /home/$USER/
6 RaspberryPi/buildroot -2014.11/ output/images/rootfs.tar

7 userk@dopamine :/media/userk/Root$ ls

11

Cap. 2 Building a minimal Linux System §2.2 Buildroot configuration

8 bin etc lib linuxrc media opt root sbin tmp var

9 dev home lib32 lost+found mnt proc run sys usr

2.2.2 Prepare the Boot partition

The RaspberryPi must find the following files in the Boot partition

• bootcode.bin

• config.txt

• fixup.dat

• start.elf

• zImage

Usually the kernel image name is kernel.img. It has been defined as zImage in the

config.txt file.

1 /media/userk/Root$ cd ¬/RaspberryPi/buildroot -2014.11/ output/images

2 ¬/buildroot -2014.11/ output/images$ sudo cp rpi -firmware /* /media/$USER/Boot/
3 ¬/buildroot -2014.11/ output/images$ sudo cp zImage /media/$USER/Boot/zImage

Since the filesystem, the bootloader and the kernel image have been created, we

can run our minimal on the Raspberry Pi. Insert the micro SD in the model B+

board and login as root and insert pitos as password.

12

Chapter 3

Linux Kernel and Xenomai patch

3.1 Xenomai overview

Xenomai supports the running of real-time programs in user space. These tasks

are exclusively controlled by the co-kernel during the course of their time-critical

operations so that very low latencies are achieved for their code running inside a

standard Linux kernel. To allow porting traditional RTOS APIs to Linux based real

time frameworks, the Xenomai core provides generic building blocks for implementing

real time APIs, also known as skins. The official Xenomai project website, offering

source code, documentation, technical articles, and other resources, is http://www.

xenomai.org.

13

http://www.xenomai.org
http://www.xenomai.org

Cap. 3 Linux Kernel and Xenomai patch §3.1 Xenomai overview

Figure 3.1: The Xenomai architecture

3.1.1 The interrupt pipeline

In order to keep latency predictable for real-time tasks, the system must ensure that

the regular Linux kernel never defers external interrupts. The interrupts should be

delivered as quickly as possible to Xenomai. Therefore, the interrupt pipeline or I-

pipe acts as an additional software between the hardware, Linux, and Xenomai. The

I-pipe organizes the system as a set of domains connected through a software pipeline.

Within an I-pipe-featured kernel, Xenomai is the highest priority domain, ahead of the

Linux kernel. The I-pipe dispatches events such as interrupts, system calls, processor

faults, and exceptions to domains according to each domain’s static priority.

The I-pipe implementation is available as patches against a number of Linux ver-

sions. In this section we will use Linux kernel 3.8.13 since it is compatible with the

i-pipe arm Adeos patch and others required to fulfill the objective. We will then

compile the kernel and substitute the image we previously created.

14

Cap. 3 Linux Kernel and Xenomai patch §3.2 Download the cross compiler and Xenomai

3.2 Download the cross compiler and Xenomai

In order to cross compile the kernel we could use the one provided by Buildroot but

we will use the one included in the Raspberry Pi tools archive from github. Both

cross compilers work.

1 $ cd && cd RaspberryPi

2 RaspberryPi$ mkdir Xenomai -RPI && cd Xenomai -RPI

3 RaspberryPi/Xenomai -RPI$ wget https :// github.com/raspberrypi/tools/archive/

4 master.tar.gz

5 RaspberryPi/Xenomai -RPI$ tar xzf master.tar.gz

6 RaspberryPi/Xenomai -RPI$ wget -q -O - http :// download.gna.org/xenomai/stab

7 le/xenomai -2.6.3. tar.bz2 | tar -xjf -

3.3 The Linux Kernel

Let’s create a new directory and download the linux kernel version 3.8.13 from the

Linux Kernel Archives.

1 RaspberryPi/Xenomai -RPI$ git clone -b rpi -3.8.y git :// github.com/raspberrypi/

2 linux.git linux -3.8.13

3 RaspberryPi/Xenomai -RPI$ cd linux -3.8.13

4 RaspberryPi/Xenomai -RPI/linux -3.8.13$

The latest patches in the xenomai-2.6.3/ksrc/arch/arm/patches/raspberry folder.

1 RaspberryPi/Xenomai -RPI/linux -3.8.13$ patch -Np1 < ../ xenomai -2.6.3/ ksrc/arch/

2 arm/patches/raspberry/ipipe -core -3.8.13 - raspberry -pre -2. patch

We can now apply the ipipe patch by running the prepare-kernel.sh script located in

the scripts folder. We just need to specify the path of the target kernel source tree,

the Adeos patch to apply against the tree and the target architecture.

1 RaspberryPi/Xenomai -RPI/linux -3.8.13$../ xenomai -2.6.3/ scripts /./ prepare -kernel.sh

15

Cap. 3 Linux Kernel and Xenomai patch §3.3 The Linux Kernel

2 --arch=arm --linux =./ --adeos =../ xenomai -2.6.3/ ksrc/arch/arm/patches/

3 ipipe -core -3.8.13 -arm -3. patch

The above command prepares the Linux tree located at ./linux-3.8.13 in order to

include the Xenomai support. Once the target kernel has been prepared, the ker-

nel should be configured following its usual configuration procedure. All Xenomai

configuration options are available from the “Real-time subsystem” toplevel menu.

We can finally apply the last patch

1 RaspberryPi/Xenomai -RPI/linux -3.8.13$ patch -Np1 < ../ xenomai -2.6.3/ ksrc/arch/

2 arm/patches/raspberry/ipipe -core -3.8.13 - raspberry -post -2. patch

3.3.1 Kernel compilation

Before running the cross compilation, we need to load a basic configuration optimized

for the board’s hardware and add a few components to include I2C, SPI support and

remove frequency scaling and CPU Idle power management support.

I2C and SPI support

Since several sensors provide SPI and I2C transmission protocol, we need to enable

the kernel support from the configuration assistant.

1 RaspberryPi/Xenomai -RPI/linux -3.8.13$ make menuconfig

Go to the Device Driver menu and check the I2C support pressing Y.

• Enter the I2C menu, go to I2C device interface and Press M for module support.

• Enter the I2C Hardware Bus support menu and press M to enable the module

support for the BCM2708 BSC

16

Cap. 3 Linux Kernel and Xenomai patch §3.3 The Linux Kernel

Check the SPI support pressing Y and enter the sub menu. Press M near the BCM2708

SPI controller driver.

3.3.2 Optimization for Real Time systems

The Xenomai Learning system provides a few guidelines in order to set up a kernel for

Xenomai in a dual kernel configuration. The CPU frequency scaling feature, option

CONFIG CPU FREQ, allows you to change the clock speed of the CPU on the fly.

This is a nice method to save power but in real time applications this could lead to

unpredictable behavior and high latencies.

Disable the CPU Frequency scaling option in CPU Power Management. Press ‘n’

to disable.

Xenomai developers suggest to disable CONFIG CPU IDLE because it allows the

CPU to enter deep sleep states, increasing the time it takes to get out of these sleep

states, hence the latency of an idle system. Also, on some CPU, entering these deep

sleep states causes the timers used by Xenomai to stop functioning.

Disable CPU idle PM support in the CPU Power Management menu. Save the

configuration and cross-compile.

1 RaspberryPi/Xenomai -RPI/linux -3.8.13$ make ARCH=arm

2 CROSS_COMPILE =../ tools -master/arm -bcm2708/

3 gcc -linaro -arm -linux -gnueabihf -raspbian/bin/arm -linux -gnueabihf -

The kernel image is now available to be transferred in the Raspberry Pi Boot partition.

The image called ’zImage’ is located in the arch/arm/boot/ folder. You can copy the

old kernel image in a secure place before replacing it.

1 RaspberryPi/Xenomai -RPI/linux -3.8.13$ sudo cp /media/$USER/Boot/zImage
2 RaspberryPi/Xenomai -RPI/linux -3.8.13$ sudo cp arch/arm/boot/zImage

17

Cap. 3 Linux Kernel and Xenomai patch §3.4 Compile Xenomai user space

3 /media/$USER/Boot/zImage

Kernel modules are installed into the /lib/modules/x.y.z directory on the target sys-

tem. Copy them into the SD card in /media/$USER/Root.

1 RaspberryPi/Xenomai -RPI/linux -3.8.13$ sudo make ARCH=arm INSTALL_MOD_PATH=

2 /media/$USER/Root modules_install

3.4 Compile Xenomai user space

Let’s compile Xenomai user space by first defining the absolute path of the cross-

compiler and then running the configure command.

1 RaspberryPi/Xenomai -RPI/linux -3.8.13$ cd ../ xenomai -2.6.3

2 RaspberryPi/Xenomai -RPI/xenomai -2.6.3$ PATH=$PATH:/home/$USER/RaspberryPi/
3 Xenomai -RPI/tools -master/ arm -bcm2708/gcc -linaro -arm -linux -gnueabihf -raspbian/bin

4 RaspberryPi/Xenomai -RPI/xenomai -2.6.3$./ configure --host=arm -linux -gnueabihf

5 CFLAGS='-march=armv6 ' LDFLAGS='-march=armv6 '
6 RaspberryPi/Xenomai -RPI/xenomai -2.6.3$ make

7 RaspberryPi/Xenomai -RPI/xenomai -2.6.3$ make DESTDIR=$(pwd)/RPI install

Compress the sbin, bin and lib folder and copy them to the Root partition

1 RaspberryPi/Xenomai -RPI/xenomai -2.6.3$ tar cjf xenomai -rpi.tar.bz2

2 usr/xenomai/bin/ usr/xenomai/sbin/ usr/xenomai/lib/ usr/xenomai/include/

3 RaspberryPi/Xenomai -RPI/xenomai -2.6.3$ sudo cp xenomai -rpi.tar.bz2

4 /media/$USER/Root/
5 RaspberryPi/Xenomai -RPI/xenomai -2.6.3$ cd /media/%USER/Root/

6 /media/%USER/Root/$ sudo tar xjf xenomai -rpi.tar.bz2 && sudo rm

7 xenomai -rpi.tar.bz2 && cd ..

8 /media/%USER/$ sudo umount /dev/sdb1 /dev/sdb2

Finally, we have our real time embedded system with Xenomai!

18

Chapter 4

Testing the system

It is common in the literature to report real-time test measurements made by the

real-time system being tested. In this chapter we will present three experiments to

measure the latencies of the system. We will first use the latency benchmark tool1

provided by Xenomai and then implement two kernel modules to generate periodic

signals with the GPIO pins of the Raspberry pi and register interrupts with the Real

Time Xenomai API v2.6.4.

The Resources section of the Project website shows several benchmarks of the dual

kernel over different versions of Linux. Tests compare the latencies of Xenomai 2.6.1

and Xenomai 3 (Cobalt) on x86 and the ARM architectures.

1For further information read the xeno-test manual page:
http://www.xenomai.org/documentation/trunk/html/xeno-test/

19

Cap. 4 Testing the system §4.1 Test 1: Latency benchmark tool

Figure 4.1: Texas Instrument Panda board, running a TI OMAP4430 processor at 1
GHz

As shown in Figure 4, the worst case latency with the Panda board is about 28

µs.

4.1 Test 1: Latency benchmark tool

Xenomai provides several benchmark tools to test real time features. They are avail-

able in the /usr/xenomai/bin folder and require the system to run a suitable Xenomai

enabled kernel with the xeno timerbench and xeno native modules loaded. We will

run the timer latency benchmark program written by Philippe Gerum and provided

by the Xenomai test suite. The latency test displays a message every second with

minimal, maximal and average latency values. We first run measurements when the

20

Cap. 4 Testing the system §4.1 Test 1: Latency benchmark tool

system is unloaded.

1 # echo 0 > /proc/xenomai/latency

2 # latency -p 100

3 == Sampling period: 100 us

4 == Test mode: periodic user -mode task

5 == All results in microseconds

6 warming up...

7 RTH|----lat min|----lat avg|----lat max|-overrun|---msw|---lat best|--lat worst

8 RTD| 2.000| 3.000| 17.000| 0| 0| 2.000| 17.000

9 RTD| 3.000| 4.000| 23.000| 0| 0| 2.000| 23.000

10 RTD| 3.000| 4.000| 21.000| 0| 0| 2.000| 23.000

11 RTD| 3.000| 4.000| 22.000| 0| 0| 2.000| 23.000

12 RTD| 3.000| 4.000| 20.000| 0| 0| 2.000| 23.000

13 RTD| 3.000| 4.000| 25.000| 0| 0| 2.000| 25.000

14 RTD| 2.000| 3.000| 24.000| 0| 0| 2.000| 25.000

15 RTD| 2.000| 3.000| 21.000| 0| 0| 2.000| 25.000

16 RTD| 3.000| 4.000| 25.000| 0| 0| 2.000| 25.000

17 RTD| 3.000| 4.000| 23.000| 0| 0| 2.000| 25.000

18 RTD| 3.000| 4.000| 24.000| 0| 0| 2.000| 25.000

19 RTD| 3.000| 4.000| 22.000| 0| 0| 2.000| 25.000

If we increase the workload and run the latency test again we obtain the following

results.

1 # echo 0 > /proc/xenomai/latency

2 # latency -p 100

3 == Sampling period: 100 us

4 == Test mode: periodic user -mode task

5 == All results in microseconds

6 warming up...

7 RTT| 02:32:49 (periodic user -mode task , 100 us period , priority 99)

8 RTH|----lat min|----lat avg|----lat max|-overrun|---msw|---lat best|--lat worst

9 RTD| 5.000| 7.000| 24.000| 0| 0| 3.000| 38.000

10 RTD| 5.000| 7.000| 23.000| 0| 0| 3.000| 38.000

11 RTD| 5.000| 7.000| 19.000| 0| 0| 3.000| 38.000

12 RTD| 5.000| 7.000| 22.000| 0| 0| 3.000| 38.000

13 RTD| 5.000| 7.000| 31.000| 0| 0| 3.000| 38.000

14 RTD| 5.000| 7.000| 21.000| 0| 0| 3.000| 38.000

15 RTD| 5.000| 7.000| 22.000| 0| 0| 3.000| 38.000

16 RTD| 5.000| 7.000| 20.000| 0| 0| 3.000| 38.000

17 RTD| 5.000| 8.000| 23.000| 0| 0| 3.000| 38.000

18 RTD| 5.000| 7.000| 21.000| 0| 0| 3.000| 38.000

19 RTD| 5.000| 7.000| 20.000| 0| 0| 3.000| 38.000

20 RTD| 5.000| 7.000| 20.000| 0| 0| 3.000| 38.000

21 RTD| 5.000| 7.000| 24.000| 0| 0| 3.000| 38.000

22 RTD| 5.000| 7.000| 20.000| 0| 0| 3.000| 38.000

23 RTD| 5.000| 7.000| 26.000| 0| 0| 3.000| 38.000

It’s worth pointing out that the latency average and minimal values increase while

the maximal latency values remain the same (26 µs). These results underline the

21

Cap. 4 Testing the system §4.2 Test 2: Interrupt response time

deterministic behavior we are looking for.

4.2 Test 2: Interrupt response time

The most important metric for real time embedded systems is the time it takes for

them to respond to outside events. Failure to handle such events efficiently can cause

catastrophic results.

In this sectio, we will apply a technique for measuring the system’s response time to

an induced interrupt. The interrupts are triggered by an outside source, a frequency

generator, by connecting it to an interrupt generating input pin on the target.

The aim of this experiment is to create a kernel module that implement an interrupt

handler to toggle the state of one of the Raspberry’s output pins and measure the

exact time it takes for the system to respond to interrupts. The system’s response

will be measured and the square wave generated by the frequency generator will be

plotted thanks to an oscilloscope connected to the board.

4.2.1 GPIO Interfaces

A ”General Purpose Input/Output” is a flexible software-controlled digital signal.

These interfaces are provided from many kinds of chip. Each GPIO represents a

bit connected to a particular pin. To help catch system configuration errors, two

calls are defined. The gpio request(unsigned gpio, const char *label) requests

GPIO, returning 0 or negative errno. The gpio free(unsigned gpio) releases a

previously claimed pin. If we want to use the pin as an input or an output, we can

mark the direction using gpio direction output(unsigned gpio, int value) or

gpio direction input(unsigned gpio). The Raspberry pi B+ provides more than

29 pins with the expansion header. GPIO numbers are unsigned integers, so are IRQ

22

Cap. 4 Testing the system §4.2 Test 2: Interrupt response time

numbers. These make up two logically distinct namespaces. The following function

maps pin numbers to IRQ numbers: gpio to irq(unsigned gpio).

4.2.2 Interrupts

As discussed in 3.1.1, in order to keep latency predictable, the real-time system must

ensure that the regular Linux kernel never defers external interrupts. The interrupts

are masked at the hardware level and are delivered as quickly as possible to Xeno-

mai. The interrupt pipeline relies on a modification of the Linux kernel sources for

virtualizing the interrupt mask. The Xenomai co-kernel registers a set of handlers for

various I-pipe events. These handlers notify Xenomai of any event before Linux can

handle it.

The Interrupt management services of the Xenomai API contains a number of func-

tions to deal with interrupts, such as create, enable, disable, and delete operations. In

kernel space the rtdm irq request function takes a rtdm irq handler t as argument

and registers it with an IRQ line. We will use this function to associate an ISR to the

external interrupt.

1 int rtdm_irq_request(

2 rtdm_irq_t * irq_handle ,

3 unsigned int irq_no ,

4 rtdm_irq_handler_t handler ,

5 unsigned long flags ,

6 const char * device_name ,

7 void * arg)

The interrupt handler defines the operations that will be performed when the interrupt

is triggered. In our case, we want to toggle the value of the GPIO pin every time the

handler is invoked.

1 static int handler_interrupt(rtdm_irq_t * irq)

23

Cap. 4 Testing the system §4.2 Test 2: Interrupt response time

2 {

3 static int value = 0;

4 gpio_set_value(GPIO_OUT , value);

5 value = 1 - value;

6 return RTDM_IRQ_HANDLED;

7 }

4.2.3 The kernel module

In irq-rtdm.c module we will register an interrupt and associate an ISR to it in order

to toggle the value of a GPIO pin. We will then measure the system’s response time.

The init function requests two GPIO pins, configures one as input and the other

as output and registers the interrupt handler. The exit function releases the GPIO

pins and the interrupt handler.

1 #include <linux/gpio.h>

2 #include <linux/interrupt.h>

3 #include <linux/module.h>

4

5 #include <rtdm/rtdm_driver.h>

6

7 // GPIO Input 22

8 #define GPIO_IN 22

9 // GPIO Output 22

10 #define GPIO_OUT 25

11

12 static rtdm_irq_t irq_rtdm;

13

14 static int handler_interrupt(rtdm_irq_t * irq)

15 {

16 static int value = 0;

17 gpio_set_value(GPIO_OUT , value);

18 value = 1 - value;

19 return RTDM_IRQ_HANDLED;

20 }

21

22 static int __init exemple_init (void)

23 {

24 unsigned int numero_interrupt = gpio_to_irq(GPIO_IN);

25 int err;

26

27 printk("Module loaded\n");

28 if ((err = gpio_request(GPIO_IN ,"input")) != 0)

29 {

30 printk("error %d: could not request gpio: %d\n"

31 ,err , GPIO_IN);

32 return err;

33 }

34 else if (err == 0)

35 {

36 printk("info: GPIO %d requested .\n",GPIO_IN);

24

Cap. 4 Testing the system §4.2 Test 2: Interrupt response time

37 }

38

39 if ((err = gpio_direction_input(GPIO_IN)) != 0) {

40 gpio_free(GPIO_IN);

41 printk("error %d: could not request diretction

42 to gpio: %d\n",err , GPIO_IN);

43 return err;

44 }

45 if ((err = gpio_request(GPIO_OUT ,"output")) != 0) {

46 printk("error %d: could not request gpio: %d\n"

47 ,err , GPIO_OUT);

48 gpio_free(GPIO_IN);

49 return err;

50 }

51 else if (err == 0)

52 {

53 printk("info: GPIO %d requested .\n",GPIO_OUT);

54 }

55

56 if ((err = gpio_direction_output(GPIO_OUT ,1)) != 0) {

57 printk("error %d: could not request direction

58 to gpio: %d\n",err , GPIO_OUT);

59 gpio_free(GPIO_OUT);

60 gpio_free(GPIO_IN);

61 return err;

62 }

63

64 // irq_set_irq_type(numero_interrupt , IRQF_TRIGGER_RISING);

65

66 if ((err = rtdm_irq_request (& irq_rtdm ,

67 numero_interrupt , handler_interrupt ,

68 RTDM_IRQTYPE_EDGE ,

69 THIS_MODULE ->name , NULL)) != 0) {

70 printk("error %d: could not request gpio: %d\n",

71 err , GPIO_IN);

72 gpio_free(GPIO_OUT);

73 gpio_free(GPIO_IN);

74 return err;

75 }

76 return 0;

77 }

78

79 static void __exit exemple_exit (void)

80 {

81 printk("Module removed\n");

82 rtdm_irq_free (& irq_rtdm);

83 gpio_free(GPIO_OUT);

84 gpio_free(GPIO_IN);

85 }

86

87 module_init(exemple_init);

88 module_exit(exemple_exit);

89 MODULE_LICENSE("GPL");

To compile the module we will use the cross compiler provided by Buildroot. Dur-

ing the configuration step in Chapter two, we specified /usr/local/cross-rpi as host

directory in the build options menu.

25

Cap. 4 Testing the system §4.2 Test 2: Interrupt response time

1 EXTRA_CFLAGS := -I /home/userk/Development/Linux/RaspberryPi/

2 Xenomai -RPI/xenomai -2.6.3/ RPI/usr/xenomai/include/

3

4 ifneq (${KERNELRELEASE },)
5 obj -m += irq -rtdm.o

6 else

7 ARCH ?= arm

8 CROSS_COMPILE ?= /usr/local/cross -rpi/usr/bin/arm -linux -

9 KERNEL_DIR = /home/userk/Development/Linux/RaspberryPi/

10 Xenomai -RPI/linux -3.8. yOK/

11 MODULE_DIR := $(shell pwd)

12 CFLAGS := -Wall -g

13

14 .PHONY: all

15 all:: modules

16

17 .PHONY: modules

18 modules:

19 ${MAKE} ARCH=${ARCH} CROSS_COMPILE=${CROSS_COMPILE}
20 -C ${KERNEL_DIR} SUBDIRS=${MODULE_DIR} modules

21

22 XENOCONFIG =/home/userk/Development/Linux/RaspberryPi/Xenomai -RPI/

23 xenomai -2.6.3/ RPI/usr/xenomai/bin/xeno -config

24

25 .PHONY: clean

26 clean::

27 rm -f *.o .*.o .*.o.* *.ko .*.ko *.mod.* .*.mod.* .*.cmd *¬
28 rm -f Module.symvers Module.markers modules.order

29 rm -rf .tmp_versions

30 endif

Once copied in the micro-sd card and moved in the current working directory on the

target device, we can load the module with insmod irq-rtdm.ko and check the log

with dmesg | tail -3 command. The following messages should appear.

1 module loaded

2 info: GPIO 22 requested.

3 info: GPIO 25 requested.

The system’s response time with no load is shown in Figure 4.1. As we can see, the

latency is around 3 µs.

26

Cap. 4 Testing the system §4.2 Test 2: Interrupt response time

Figure 4.2: Response time with unloaded system

In order to increase the cpu usage to 100% we asked the system to perform the

following operation2:

1 dd if=/dev/zero of=/dev/null

The test was conducted with the maximum system load for two hours. Figure 4.3

and Figure 4.4 show that the maximum latency of the system never exceeds 20µs.

Figure 4.3: Response time with 100% cpu usage

2http://unix.stackexchange.com/questions/185559/which-commands-or-operations-can-be-used-
to-put-the-cpu-under-intense-load

27

Cap. 4 Testing the system §4.3 Test 3: Periodic signal

Figure 4.4: Response time with 100% cpu usage, 120 min.

4.3 Test 3: Periodic signal

The aim of this second test is to determine whether the Raspberry Pi is able to

generate a reliable Pwm signal in order to control a brushless motor. Pulse With

Modulation is a technique used to encode a message into a pulsing signal. Pulses of

various lengths (the information itself) are sent at regular intervals. For simplicity’s

sake, we have written a basic kernel module simulating a 50% duty cycle thrust input

as shown in Figure 4.5.

28

Cap. 4 Testing the system §4.3 Test 3: Periodic signal

Figure 4.5: Pwm duty cycle

4.3.1 RealTime Driver Model and Timer services

In order to take advantage of the real time features of the system we will use the

Timer services of the RealTime Driver Model (RTDM). The RTDM acts as a mediator

between the application requesting a service from a certain device and the device driver

offering it. Its API are addressable both from kernel and user space. The RTDM skin

makes use of Xenomai’s ability user space real time threads automatically between

Hard Real Time and Linux operation mode.

29

Cap. 4 Testing the system §4.3 Test 3: Periodic signal

Figure 4.6: RTDM and related layers

The system we have created in the previous chapter provides a simple API for

the construction and management of timers. It consists of functions for timer cre-

ation, cancellation, and management. In order to use timers the user must ini-

tialize it with rtdm timer init and start it with the rtdm timer start function

specifying the firing time, the interval and the mode which in our case will be

RTDM TIMERMODE REALTIME.

1 rtdm_timer_init (& rtimer , timer_osc , "Oscillator")

2 rtdm_timer_start (& rtimer , period_us *1000, period_us *1000 ,

3 RTDM_TIMERMODE_REALTIME)

With the initialized timer, the user need to specify the timer handler and the opera-

tions to perform. In our case we will just toggle the value of the GPIO pin.

1 static void timer_osc(rtdm_timer_t * unused)

30

Cap. 4 Testing the system §4.3 Test 3: Periodic signal

2 {

3 static int value = 0;

4 gpio_set_value(GPIO_OSC , value);

5 value = 1 - value;

6 }

In the next subsection we will discuss the GPIO handling in kernel mode.

4.3.2 The kernel module

In this module we will implement a basic periodic square wave on pin 22. We will pass

the period as a parameter to the module in order to assign the parameter value at

load time by calling insmod pwm period us=x. In the init function we will first

claim pin 22, configure it as an output, initiate and start the rtdm timer. Next, we

define the timer handler as described in 4.3.1. And in the exit function we release

the GPIO pin, and stop and destroy the timer.

1 #include <linux/gpio.h>

2 #include <linux/module.h>

3 #include <linux/sched.h>

4 #include <linux/version.h>

5 #include <rtdm/rtdm_driver.h>

6

7 static int period_us = 1000;

8 module_param(period_us , int , 0644);

9

10 static void timer_osc(rtdm_timer_t *);

11 static rtdm_timer_t rtimer;

12

13 // pin 15 of the P1 header of the Raspberry Pi : GPIO 22

14 #define GPIO_OSC 22

15

16 static int __init init_osc(void)

17 {

18 int err;

19 printk(KERN_NOTICE "Pwm Kernel module loaded.

20 [pin ,period]=[22 ,%d]\n", period_us);

21 if ((err = gpio_request(GPIO_OSC , THIS_MODULE ->name))!= 0)

22 {

23 return err;

24 }

25 if ((err = gpio_direction_output(GPIO_OSC , 1))!= 0)

26 {

27 gpio_free(GPIO_OSCILLATEUR);

28 return err;

29 }

30

31 if ((err = rtdm_timer_init (& rtimer , timer_osc ,

32 "oscillator")) != 0)

31

Cap. 4 Testing the system §4.3 Test 3: Periodic signal

33 {

34 gpio_free(GPIO_OSC);

35 return err;

36 }

37

38 if ((err = rtdm_timer_start (& rtimer , period_us *1000,

39 period_us *1000, RTDM_TIMERMODE_REALTIME)) != 0)

40 {

41 rtdm_timer_destroy (& rtimer);

42 gpio_free(GPIO_OSC);

43 return err;

44 }

45 return 0;

46 }

47

48 static void __exit exit_osc (void)

49 {

50 rtdm_timer_stop (& rtimer);

51 rtdm_timer_destroy (& rtimer);

52 gpio_free(GPIO_OSC);

53 }

54

55 static void timer_osc(rtdm_timer_t * unused)

56 {

57 static int value = 0;

58 gpio_set_value(GPIO_OSC , value);

59 value = 1 - value;

60 }

61

62 module_init(init_osc);

63 module_exit(exit_osc);

We can cross-compile the module as we did for the second experiment using the

following Makefile.

1 EXTRA_CFLAGS := -I /home/userk/Development/Linux/RaspberryPi/

2 Xenomai -RPI/xenomai -2.6.3/ RPI/usr/xenomai/include/

3 ifneq (${KERNELRELEASE },)
4 obj -m += pwm.o

5 else

6 ARCH ?= arm

7 CROSS_COMPILE ?= /usr/local/cross -rpi/usr/bin/arm -linux -

8 KERNEL_DIR = /home/userk/RaspberryPi/Xenomai -RPI/linux -3.8.13/

9 MODULE_DIR := $(shell pwd)

10 CFLAGS := -Wall -g

11

12 .PHONY: all

13 all:: modules

14

15 .PHONY: modules

16 modules:

17 ${MAKE} ARCH=${ARCH} CROSS_COMPILE=${CROSS_COMPILE}
18 -C ${KERNEL_DIR} SUBDIRS=${MODULE_DIR} modules

19

20 XENO_DESTDIR :=/ home/userk/RaspberryPi/Xenomai -RPI/xenomai -2.6.3/ RPI/

21 XENO_CONFIG :=$(XENO_DESTDIR)/usr/xenomai/bin/xeno -config
22 XENO_POSI_CFLAGS :=$(shell DESTDIR=$(XENO_DESTDIR)
23 %(XENO_CONFIG) --skin=posix --cflags)

32

Cap. 4 Testing the system §4.3 Test 3: Periodic signal

24 XENO_POSIX_LIBS:$(shell DESTDIR=$(XENO_DESTDIR)
25 $(XENO_CONFIG) --skin=posix --ldflags)

26

27 .PHONY: clean

28 clean::

29 rm -f *.o .*.o .*.o.* *.ko .*.ko *.mod.* .*.mod.* .*.cmd *¬
30 rm -f Module.symvers Module.markers modules.order

31 rm -rf .tmp_versions

32 endif

Figure 4.7: The Raspberry Pi B+ connected to an oscilloscope

4.3.3 Results and conclusions

The experiment was conducted with the 100% of cpu usage for two hours. The square

wave has been displayed thanks to an oscilloscope connected to pin 22 as shown in

Figure 4.3.3 and Figure 4.3.2.

33

Cap. 4 Testing the system §4.3 Test 3: Periodic signal

Figure 4.8: Raspberry Pi B+ setup

The following pictures show the maximal latency of the system under intense load.

The experiments were conducted with 50µs and 200µs periods. As we can see, the

maximal latency never exceeds 20 µ-seconds, as expected from Xenomai benchmarks

discussed in 4.1.

Figure 4.9: Square wave with 200µs period

If we now consider the objective of the application, the crucial point is to ensure

that the pulse width remains exactly the same as long as we want the brushless motor

to rotate at a constant rate. The Raspberry Pi controls the inputs of a quadrotor

34

Cap. 4 Testing the system §4.3 Test 3: Periodic signal

system in which the roll τθ and pitch τϕ torques are given by a similar expression:

τθ = Lk(ω2
1 − ω2

2) (4.3.1)

in which k is a constant ωi is the angular rate of the i-motor and L is the distance

between the motors and the center of gravity of the object frame. From the results

obtained we can conclude that if a square wave of x µs is required, the Raspberry

Pi will produce a signal with a period of (x ± ε)µs with ε > 5µs. If we consider the

resulting pwm signal, this small uncertainty will end up in small change in angular

velocity of the motor which will generate an undesired torque acting on the body

frame. Although we have minimized the uncertainty in the response time, the real

time system cannot be used to handle pwm signal controlling the attitude of the

quadcopter. A dedicated micro-controller, such as Arduino, will be included in the

system as a reliable PWM signal generator.

Figure 4.10: Square wave with 50µs period

35

Bibliography

[1] Giorgio C. Buttazzo, , “Hard Real-Time Computing Systems.”, Second edition.

Springer, 2005.

[2] Jane W. S. Liu, “Real-Time Systems”, Prentice Hall, 2000.

[3] Marco Cesati, Daniel P. Bovet “Understanding the Linux Kernel”, 2008.

[4] Karim Yaghmour, Jon Masters, Gilad Ben-Yossef, Philippe Gerum, “Building

Embedded Linux Systems”, 2008.

[5] Sistemi Embedded e Real Time, “http://sert14.sprg.uniroma2.it/”, Marco Cesati,

2013.

[6] J. Kiszka, University of Hannover Appelstrasse 9A, 30167 Hannover, Germany,

“Real Time Driver Model and first applications”.

[7] Xenomai official project page, “http://xenomai.org”.

[8] The Linux Kernel Archives , “https://www.kernel.org/”.

[9] Linux from scratch, “http://www.linuxfromscratch.org/”.

[10] Buildroot, Making Embedded Linux Easy, “http://buildroot.uclibc.org/”.

36

	Introduction
	Building a minimal Linux System
	Prepare the sd card
	Create the Boot partition
	Create the Root partition
	Add Label to partitions

	Buildroot configuration
	Prepare the Root partition
	Prepare the Boot partition

	Linux Kernel and Xenomai patch
	Xenomai overview
	The interrupt pipeline

	Download the cross compiler and Xenomai
	The Linux Kernel
	Kernel compilation
	Optimization for Real Time systems

	Compile Xenomai user space

	Testing the system
	Test 1: Latency benchmark tool
	Test 2: Interrupt response time
	GPIO Interfaces
	Interrupts
	The kernel module

	Test 3: Periodic signal
	RealTime Driver Model and Timer services
	The kernel module
	Results and conclusions

	References

